Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(3): 1160-1169, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37851841

RESUMO

Lymphatic vessels have received significant attention as drug delivery targets, as they shuttle materials from peripheral tissues to the lymph nodes, where adaptive immunity is formed. Delivery of immune modulatory materials to the lymph nodes via lymphatic vessels has been shown to enhance their efficacy and also improve the bioavailability of drugs when delivered to intestinal lymphatic vessels. In this study, we generated a three-compartment model of a lymphatic vessel with a set of kinematic differential equations to describe the transport of nanoparticles from the surrounding tissues into lymphatic vessels. We used previously published data and collected additional experimental parameters, including the transport efficiency of nanoparticles over time, and also examined how nanoparticle formulation affected the cellular transport mechanisms using small molecule inhibitors. These experimental data were incorporated into a system of kinematic differential equations, and nonlinear, least-squares curve fitting algorithms were employed to extrapolate transport coefficients within our model. The subsequent computational framework produced some of the first parameters to describe transport kinetics across lymphatic endothelial cells and allowed for the quantitative analysis of the driving mechanisms of transport into lymphatic vessels. Our model indicates that transcellular mechanisms, such as micro- and macropinocytosis, drive transport into lymphatics. This information is crucial to further design strategies that will modulate lymphatic transport for drug delivery, particularly in diseases like lymphedema, where normal lymphatic functions are impaired.


Assuntos
Vasos Linfáticos , Nanopartículas , Células Endoteliais , Linfonodos/metabolismo , Transcitose
2.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798234

RESUMO

Rationale: Lymphangioleiomyomatosis (LAM) is a devastating disease primarily found in women of reproductive age that leads to cancer-like cystic destruction of the lungs. Recent work has shown that LAM causes immunosuppression and that checkpoint inhibitors can be used as LAM treatment. IN lung cancer, TLR agonist, in particular TLR9 agonist CpG has been shown to be effective. Objectives: Here we investigate the use of TLR9 agonist CpG as LAM immunotherapy in combination with checkpoint inhibitor, anti-PD1 and assess induced changes in anti-LAM immunity. Methods: We used a murine model of metastatic LAM to determine survival after intranasal treatment with TLR9 agonist CpG at two doses and in combination the checkpoint inhibitor immunotherapy, anti-PD-1. We used histology and flow cytometry to assess overall inflammation as well as changes in the immune response upon treatment. Measurements and Main Results: We found that local administration of CpG enhances survival in a murine model of LAM and that a lower dose more effectively balanced the inflammation induced by CpG with the anti-LAM therapeutic benefits. We also found that CpG reduces regulatory T cell infiltration in LAM lungs and that CD4 helper T cells are skewed toward pro-inflammatory phenotypes. We also found that CpG treatment is effective in both early stage and progressive disease and that CpG is synergistic with previously tested anti-PD1 therapy. Conclusions: We have found that TLR9 agonist CpG can be used as LAM immunotherapy and effectively synergizes with anti-PD1 therapy in LAM.

3.
Cell Mol Bioeng ; 15(5): 479-491, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36444342

RESUMO

Introduction: Gastrointestinal (GI) in vitro models have received lasting attention as an effective tool to model drug and nutrient absorption, study GI diseases, and design new drug delivery vehicles. A complete model of the GI epithelium should at a minimum include the two key functional components of the GI tract: mucus and the underlying epithelium. Mucus plays a key role in protecting and lubricating the GI tract, poses a barrier to orally administered therapies and pathogens, and serves as the microenvironment for the GI microbiome. These functions are reliant on the biophysical material properties of the mucus produced, including viscosity and pore size. Methods: In this study, we generated in vitro models containing Caco-2 enterocyte-like cells and HT29-MTX goblet-like cells and determined the effects of coculture and mucus layer on epithelial permeability and biophysical properties of mucus using multiple particle tracking (MPT). Results: We found that mucus height increased as the amount of HT29-MTX goblet-like cells increased. Additionally, we found that increasing the amount of HT29-MTX goblet-like cells within culture corresponded to an increase in mucus pore size and mucus microviscosity, measured using MPT. When compared to ex vivo mucus samples from mice and pigs, we found that a 90:10 ratio of Caco-2:HT29-MTX coculture displayed similar mucus pore size to porcine jejunum and that the mucus produced from 90:10 and 80:20 ratios of cells shared mechanical properties to porcine jejunum and ileum mucus. Conclusions: GI coculture models are valuable tools in simulating the mucus barrier and can be utilized for a variety of applications including the study of GI diseases, food absorption, or therapeutic development.

4.
Front Pharmacol ; 13: 887402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721179

RESUMO

The lymphatics transport material from peripheral tissues to lymph nodes, where immune responses are formed, before being transported into systemic circulation. With key roles in transport and fluid homeostasis, lymphatic dysregulation is linked to diseases, including lymphedema. Fluid within the interstitium passes into initial lymphatic vessels where a valve system prevents fluid backflow. Additionally, lymphatic endothelial cells produce key chemokines, such as CCL21, that direct the migration of dendritic cells and lymphocytes. As a result, lymphatics are an attractive delivery route for transporting immune modulatory treatments to lymph nodes where immunotherapies are potentiated in addition to being an alternative method of reaching systemic circulation. In this review, we discuss the physiology of lymphatic vessels and mechanisms used in the transport of materials from peripheral tissues to lymph nodes. We then summarize nanomaterial-based strategies to take advantage of lymphatic transport functions for delivering therapeutics to lymph nodes or systemic circulation. We also describe opportunities for targeting lymphatic endothelial cells to modulate transport and immune functions.

5.
Acta Biomater ; 145: 146-158, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35381399

RESUMO

Lymphatic vessels have recently been shown to effectively deliver immune modulatory therapies to the lymph nodes, which enhances their therapeutic efficacy. Prior work has shown that lymphatics transport 10-250 nm nanoparticles from peripheral tissues to the lymph node. However, the surface chemistry required to maximize this transport is poorly understood. Here, we determined the effect of surface poly(ethylene glycol) (PEG) density and size on nanoparticle transport across lymphatic endothelial cells (LECs) by differentially PEGylated model polystyrene nanoparticles. Using an established in-vitro lymphatic transport model, we found PEGylation improved the transport of 100 and 40 nm nanoparticles across LECs 50-fold compared to the unmodified nanoparticles and that transport is maximized when the PEG is in a dense brush conformation or high grafting density (Rf/D = 4.9). We also determined that these trends are not size-dependent. PEGylating 40 nm nanoparticles improved transport efficiency across LECs 68-fold compared to unmodified nanoparticles. We also found that PEGylated 100 nm and 40 nm nanoparticles accumulate in lymph nodes within 4 h after intradermal injection, while unmodified nanoparticles accumulated minimally. Densely PEGylated nanoparticles traveled the furthest distance from the injection site and densely PEGylated 40 nm nanoparticles had maximum accumulation in the lymph nodes compared to low density PEGylated and unmodified nanoparticles. Finally, we determined that nanoparticles are transported via both paracellular and transcellular mechanisms, and that PEG conformation modulates the cellular transport mechanisms. Our results suggest that PEG conformation is crucial to maximize nanoparticle transport across LECs and into lymphatic vessels, making PEG density a crucial design. Optimizing PEG density on nanoparticle formulations has the potential to enhance immunotherapeutic and vaccine outcomes. STATEMENT OF SIGNIFICANCE: Lymphatic vessels are an emerging target for drug delivery both in the context of modulating immune responses and enhancing bioavailability by avoiding first pass hepatic metabolism after oral delivery. Lymphatic vessels are the natural conduits from peripheral tissues to the lymph nodes, where the adaptive immune response is shaped, and eventually to systemic circulation via the thoracic duct. Lymphatics can be targeted via nanoparticles, but the surface chemistry required to maximize nanoparticle transport by lymphatics vessels remains poorly understood. Here, we demonstrate that coating nanoparticles with hydrophilic polyethylene glycol (PEG) effectively enhances their transport across lymphatic endothelial cells in vitro and in vivo and that both paracellular and micropinocytosis mechanisms underly this transport. We found that dense PEG coatings maximize lymphatic transport of nanoparticles, thus providing new material design criteria for lymphatic targeted drug delivery.


Assuntos
Vasos Linfáticos , Nanopartículas , Células Endoteliais , Linfonodos/metabolismo , Nanopartículas/química , Polietilenoglicóis/química
6.
Sci Rep ; 12(1): 5012, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322079

RESUMO

The lymphatic vasculature is critical for lung function, but defects in lymphatic function in the pathogenesis of lung disease is understudied. In mice, lymphatic dysfunction alone is sufficient to cause lung injury that resembles human emphysema. Whether lymphatic function is disrupted in cigarette smoke (CS)-induced emphysema is unknown. In this study, we investigated the effect of CS on lung lymphatic function. Analysis of human lung tissue revealed significant lung lymphatic thrombosis in patients with emphysema compared to control smokers that increased with disease severity. In a mouse model, CS exposure led to lung lymphatic thrombosis, decreased lymphatic drainage, and impaired leukocyte trafficking that all preceded the development of emphysema. Proteomic analysis demonstrated an increased abundance of coagulation factors in the lymph draining from the lungs of CS-exposed mice compared to control mice. In addition, in vitro assays demonstrated a direct effect of CS on lymphatic endothelial cell integrity. These data show that CS exposure results in lung lymphatic dysfunction and a shift in thoracic lymph towards a prothrombic state. Furthermore, our data suggest that lymphatic dysfunction is due to effects of CS on the lymphatic vasculature that precede emphysema. These studies demonstrate a novel component of CS-induced lung injury that occurs early in the pathogenesis of emphysema.


Assuntos
Enfisema , Lesão Pulmonar , Enfisema Pulmonar , Fumaça , Trombose , Poluição por Fumaça de Tabaco , Animais , Enfisema/patologia , Humanos , Pulmão/patologia , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Enfisema Pulmonar/patologia , Fumaça/efeitos adversos , Lesão por Inalação de Fumaça , Trombose/patologia , Poluição por Fumaça de Tabaco/efeitos adversos
7.
Pharmaceutics ; 13(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34834170

RESUMO

The gastrointestinal (GI) tract is one the biggest mucosal surface in the body and one of the primary targets for the delivery of therapeutics, including immunotherapies. GI diseases, including, e.g., inflammatory bowel disease and intestinal infections such as cholera, pose a significant public health burden and are on the rise. Many of these diseases involve inflammatory processes that can be targeted by immune modulatory therapeutics. However, nonspecific targeting of inflammation systemically can lead to significant side effects. This can be avoided by locally targeting therapeutics to the GI tract and its mucosal immune system. In this review, we discuss nanomaterial-based strategies targeting the GI mucosal immune system, including gut-associated lymphoid tissues, tissue resident immune cells, as well as GI lymph nodes, to modulate GI inflammation and disease outcomes, as well as take advantage of some of the primary mechanisms of GI immunity such as oral tolerance.

8.
Mol Ther Methods Clin Dev ; 18: 631-638, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32775497

RESUMO

The use of the human embryonic kidney (HEK) 293T cell line to manufacture vectors for in vivo applications raises safety concerns due to the presence of SV40 T antigen-encoding sequences. We used CRISPR-Cas9 genome editing to remove the SV40 T antigen-encoding sequences from HEK293T cells by transfecting them with a recombinant plasmid expressing Cas9 and two distinct single guide RNAs (sgRNAs) corresponding to the beginning and end of the T antigen coding region. Cell clones lacking T antigen-encoding sequences were identified using PCR. Whole-genome (WG) and targeted locus amplification (TLA) sequencing of the parental HEK293T cell line revealed multiple SV40 T antigen-encoding sequences replacing cellular sequences on chromosome 3. The putative T antigen null clones demonstrated a loss of sequence reads mapping to T antigen-encoding sequences. Western blot analysis of cell extracts prepared from the T antigen null clones confirmed that the SV40 large and small T antigen proteins were absent. Lentiviral vectors produced using the T antigen null clones exhibited titers up to 1.5 × 107 transducing units (TU)/mL, while the titers obtained from the parent HEK293T cell line were up to 4 × 107 TU/mL. The capacity of the T antigen-negative cells to produce high titer adeno-associated virus (AAV) vectors was also evaluated. The results obtained revealed that the lack of T antigen sequences did not impact AAV vector titers.

9.
Tissue Barriers ; 8(1): 1695476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31775577

RESUMO

Mucosal surfaces protect our bodies from pathogens and external irritants using a system of biological barriers. Overcoming these barriers is a significant drug delivery challenge, particularly for immunotherapies that aim to modulate the local immune response. Reaching local lymphoid tissues and draining lymph nodes (LNs) requires crossing the mucus mesh, mucosal epithelium, and either targeting M cells covering lymphoid tissues or utilizing lymphatic transport that shuttles molecules and particulates from the periphery to the LN. We first highlight the barrier properties of mucus and mucosal epithelium, and the function of the mucosal immune system. We then dive into existing drug delivery technologies that have been engineered to overcome each of these barriers. We particularly focus on novel strategies for targeting lymphoid tissues, which has been shown to enhance immunotherapies and vaccinations, via directly targeting LNs, lymphatic vessels, and M cells that transport samples of mucosal content to the lymphoid tissues.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Imunoterapia/métodos , Mucosa/fisiologia , Vacinação/métodos , Humanos
10.
Augment Altern Commun ; 35(2): 120-131, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31032648

RESUMO

Transactional theories of communication development focus on the interplay among child, caregiver, and environmental variables. Typically, this interplay involves symmetry between receptive and expressive modes (i.e., speech), but is asymmetrical for children with complex communication needs who hear speech but use graphic symbols expressively. Aided input, during which a communication partner points to graphic symbols while talking, may increase symmetry, but it is challenging to determine which words to represent with graphic symbols to ensure adequate aided input is provided. In this study, secondary analysis of transcripts of 16 mothers who interacted with their children with typical development across six time points (between 9 and 15 months) revealed 267 words that comprised 80% of the 257,480 words the mothers used. This list of words that mothers used most frequently was compared to three existing lists of the expressive vocabulary used most frequently by 65 toddlers and preschoolers with typical development, indicating substantial overlap. The results suggest that there is a common set of frequently occurring words that mothers use in their daily interactions with infants and toddlers, and that these same words also comprise a significant proportion of the words most frequently used by young children. Implications for representing these frequently occurring words with graphic symbols on the communication systems of children with complex communication needs are discussed.


Assuntos
Auxiliares de Comunicação para Pessoas com Deficiência , Relações Mãe-Filho , Vocabulário , Pré-Escolar , Feminino , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...